摘 要:介紹了基于ATMEGA16的高精度低壓無功功率補償器。該控制器采用數字檢測電路來獲取電網電壓與電流的相位差,從無功補償的原理出發,設計控制器的軟硬件。使該系統在應用中實現了對電網功率因數的及時補償和實時監測,適用于目前企業用戶進行無功功率補償。
Abetted:This article introduces reactive power compensator based on ATMEGA16 controlling with high precision. It measures excess phase of voltage and current by using digital circuit, Based on the reactive compensation theorem, The software and hardware of the controller is deigned.By using the system a timely compensation and real-time monitnring of the power factor in electricity network are possible, It is mainly used to compensate reactive power in present factories and mines.
關鍵詞:功率因數;無功補償;單片機
隨著現代工業的發展,電網中使用的感性負載也愈來愈多,如感應式電動機、變壓器等。這些設備在工作時不但要消耗有功功率,同時需要電網向其提供相應的無功功率,造成電網的功率因數偏低。在電網中并聯電容器可以減少電網向感性負載提供的無功功率,從而降低輸電線路因輸送無功功率造成的輸電損耗,改善電網的運行條件,因此功率因數補償控制器一直有著廣闊的應用市場。本文所介紹的功率因數補償控制器符合JB/T9663-1999國家標準,主要功能有:
(1) 相序自動識別
(2) 電壓、電流、功率因數采樣與顯示
(3) 過壓解除、欠流封鎖,從而保護電容器及避免循環投切
(4) 采用先投入的先切除,先切除的先投入的原則,對補償電容實行循環投切
(5) 所有的工作參數都可以通過面板按鍵設定,包括投入門限、切除門限、過壓保護門限、欠電流封鎖門限、投切延時時間
一、 工作原理
采樣三相電源中一線電流(如A線)與另外兩線的電壓(如BC線)之間的相位差,通過一定的運算,得到當前電網的實時功率因數。此功率因數與設定的投入門限和切除門限比較,在整個投切延時時間內,若在投切門限以內,則不予動作;若小于投入門限,則另投入一組電容器;若大于切除門限或發現功率因數為負時,則切除一組已投入的電容器。再經過投切延時時間,重復比較與投切,直到當前的功率因數達到投切門限以內。在投切過程中,若發現檢測到的電壓大于設定的過壓保護門限,則按組切除所有已投入的電容;當檢測到的電壓超過設定的過壓保護門限的10%時,則一次性切除所有已投入的電容,用以保護電容器。在投切時若發現檢測到的電流小于欠電流封鎖門限,則停止投切動作,避免系統出現循環投切現象。
由于在三相供電中有不同接線方法,不同的接線方法對功率因數的算法也不一樣,因此我們規定ARC系列功率因數自動補償控制儀的電流取自三相供電中的A線,電壓取自BC間的線電壓,同時為減少現場接線的復雜度,我們在程序中對相位進行自動判別。
在三相供電中,我們假設三相的相電壓分別為Ua、Ub、Uc,A線電流為Ia
則有Ua=Usin(ωt),Ub=Usin(ωt+120º),Uc=Usin(ωt+240º),
從而得到BC間的線電壓為Ubc=Ub-Uc= Usin(ωt-90º)
若A線負載為純阻性,則A線電流Ia與A線電壓Ua同相,Ia超前Ubc的角度為90º;
若A線負載為感性,則A線電流Ia滯后A線電壓Ua角度為φ(0º≤φ≤90º),Ia超前Ubc的角度為90º-φ;
若A線負載為容性,則A線電流Ia超前A線電壓Ua角度為φ(0º≤φ≤90º),Ia超前Ubc的角度為90º+φ
在我們的ARC功率因數自動補償控制儀中,為了計算的方便,我們電流相位的采樣為電壓采樣的第二個周期,即若沒有相位差Ia滯后Ua的角度為360º。在實際檢測中,假設我們檢測到Ia滯后Ubc的角度為α,根據以上的分析得知:
若180º<α<270º,則電路為容性負載,COSφ=COS(270º-α)
若α=270º,則電路為感性負載,COSφ=1
若270º<α<360º,則電路為感性負載COSφ=COS(α-270º)
為方便用戶接線,若用戶將電壓Ubc接成了Ucb,或將Ia的輸入接反,根據以上的推斷,我們同樣可得到: