微信掃描二維碼,即可將本頁分享到“朋友圈”中。
2011-05-28 來源:互聯(lián)網(wǎng) 瀏覽數(shù):802
Abstract
This article demonstrates the application of a generic methodology, based on the flexible multibodysimulation technique, for the dynamic nalysis of a wind turbine and its drive train, including a gearbox. Theanalysis of the complete wind turbine is limited up to 10 Hz, whereas the study of the drive train includesfrequencies up to 1500 Hz. Both studies include a normal modes analysis. The analysis of the drive trainincludes additionally a response calculation for an excitation from the meshing gears, a Campbell analysisfor the identification of possible resonance behaviour and a simulation of a transient load case, which occursas a sudden torque variation caused by a disturbance in the electrical grid.
1 Introduction
During the last decades, the interest for using renewable energy sources for electricity generation increased [1].One of its results is a boom in the wind turbine industry since ten years. Figure 1 shows how the global installedwind power capacity reached 59.3 GW at the end of 2005, of which about 20% had been installedin that year. This rapid growth is expected to continue in the coming years and to drive new technological
improvements to further increase the capacity and reduce the cost of wind turbines.In their design calculations, the wind turbine manufacturers use dedicated software codes to simulate theload levels and variations on all components in their machines. Peeters [3] gives an overview of the existingtraditional simulation codes. He concludes that the concept of the structural model of a wind turbine in allthese codes is more or less similar and that the behaviour of the complete drive train (from rotor hub to generator)is typically represented by only one degree of freedom (DOF). This DOF represents the rotation of thegenerator and, consequently, the torsion in the drive train. Peeters describes additionally the consequencesof using this limited structural model for the simulation of drive train loads. The output of the traditionalsimulations lacks insight in the dynamic behaviour of the internal drive train components. De Vries [4] alsoraises the lack of insight in local loads and stresses in a drive train and the insufficient understanding of thedesign loads. He relates furthermore a series of gearbox failures in wind turbines to these consequencesof simulating with a limited structural model. More insight can be gained from a more detailed simulationapproach. Peeters [3] presents a generic methodology for this, which is based on three multibody system(MBS) modelling approaches.
詳細(xì)內(nèi)容請(qǐng)下載附件
【延伸閱讀】
版權(quán)與免責(zé)聲明:
凡注明稿件來源的內(nèi)容均為轉(zhuǎn)載稿或由企業(yè)用戶注冊(cè)發(fā)布,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息的目的,如轉(zhuǎn)載稿涉及版權(quán)問題,請(qǐng)作者聯(lián)系我們,同時(shí)對(duì)于用戶評(píng)論等信息,本網(wǎng)并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性;
本文地址:http://www.jiechangshiye.com/tech/show.php?itemid=9576
轉(zhuǎn)載本站原創(chuàng)文章請(qǐng)注明來源:東方風(fēng)力發(fā)電網(wǎng)
東方風(fēng)力發(fā)電網(wǎng)版權(quán)所有?2015-2024
本站QQ群:53235416 風(fēng)電大家談[1] 18110074 風(fēng)電大家談[2] 95072501 風(fēng)電交流群
東方風(fēng)力發(fā)電網(wǎng)
微信掃描關(guān)注